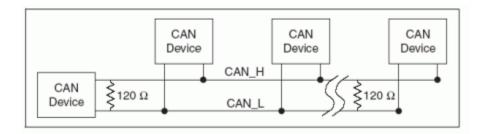

EV West Tach Driver User Manual



Overview

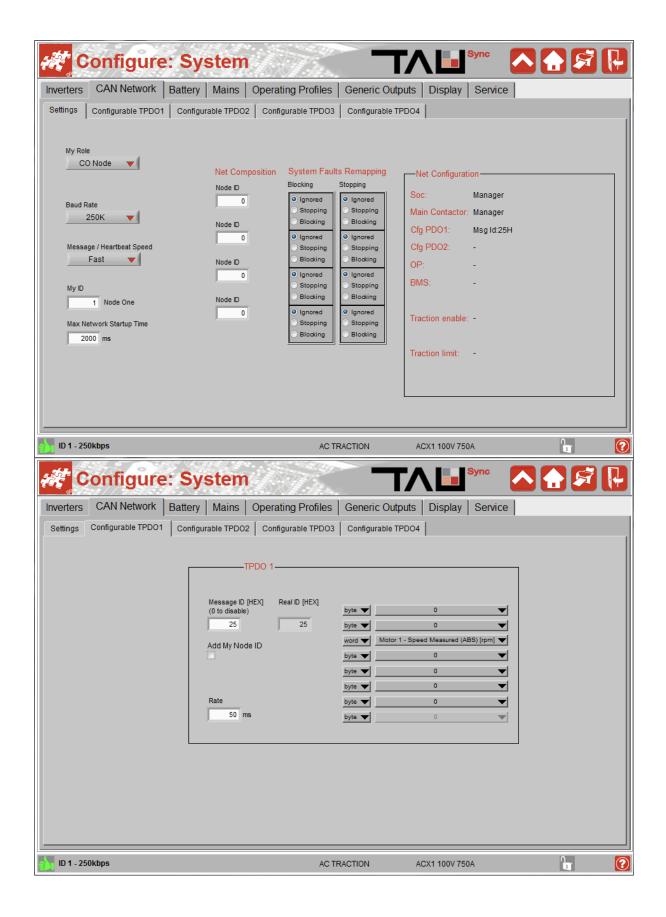
In the past, some electric speed controllers have provided an analog tachometer output for legacy vehicles and hardware. However, more modern speed controllers have begun to drop the legacy support for ICE tachometers, and have opted for more modern, robust, digital outputs. The EV West Tach Driver interfaces with NetGain's HyPer-Drive X1 or X144 speed controller to read RPM, and outputs an analog signal for your analog tachometer. It is configurable for different types of analog tachometers and has an internal CAN bus termination resistor for easy setup.

Setup Instructions

0. CAN bus termination

In order for CAN to operate, the CAN high and CAN low signal wires must be terminated by two 120Ω resistors. The driver may not function properly if your controller's CAN bus is not terminated. Luckily, both this device and the HyPer-Drive X1/X144 have optional internal 120Ω terminating resistors. In order to enable the terminating resistor on the controller, connect CAN-H RES (pin 14 on the HyPer-Drive controller's K1 connector) to CAN-L RES (pin 3 on the K1 connector). See the attached K1 connector pinout.

To enable the terminating resistor on the tach driver, enable switch 1 in the driver box.



1. HyPer-Drive X1 or X144 Configuration

In order for the tach driver to function, the HyPer-Drive X1 or X144 must be configured to output RPM over the CAN bus.

- a. Couple the Null Modem Serial Cable to the Serial-USB adapter. Both cables should be provided with the HyPer-Drive controller.
- b. Connect USB end to PC loaded with SME Smartview Smarview Sys software.
- c. Connect female serial end to the controller's male serial K3 port.
- d. After ensuring that your car is in nuetral, switch on the controller via key switch.
- e. Open SmartView DLR Sys software.
- f. Select Connection type: Normal or Wired. Then select the Serial Port your device driver was installed on.
- g. Once the SmartView software has detected the controller, you should see four options at the home page: Monitor, Diagnose, Configure, and Manage. Click Configure, then System, and select the CAN Network tab.
- h. In the **CAN Network** configuration, set the following parameters:
 - **My Role**: CO Node
 - Baud Rate: 250K
 - My ID: 1 (assuming there are no other HyPer-Drive controllers on the CAN bus)
 - **Net Composition:** All **Node ID**s should be set to 0, unless there are other HyPer-Drive controllers on the CAN bus
- i. Click the **Save** icon in the upper-right-hand corner of the screen. If you do not save the configuration to your controller before changing windows, the SmartView software will erase your changes.
- j. Select one of the Configurable TPDO tabs. In the Configurable TPDO tab, set the following parameters:
 - **Message ID [HEX]**: 25
 - Uncheck **Add My Node ID**. The **Real ID** should be 25.
 - Add the "word" Motor 1 Speed Measured (ABS) [rpm] to the list of bytes and words such that it is the third and fourth bytes in the TPDO. This simply means that **there** must be either two bytes or one word above Motor Speed. If you do not wish to output any other data, the bytes or word can simply be set to 0.
 - Click the Save icon again in the upper-right-hand corder, and then click the blinking key icon in the lower-right-hand corner of the screen. The SmartView software will ask "Do you really want to key off?" Click OK to reboot the controller and apply the changes. If all was confifured correctly, once the SmartView software detects the controller again, you should see a green thumbs up in the lower-left-hand corner of the screen followed by "ID 1 250kbps". If you see a green thumbs up, then your configuration is complete. You may check the CAN Network configuration once more to ensure that all of the parameters were saved correctly and exit. If you do not see a green thumbs up, then your controller is in a fault condition, and depending on the fault level, may not operate properly. Please follow these steps again exactly and refer to the example configurations below to see if you made a mistake that is causing the fault condition, and refer to the Diagnose section of the SmartView software to see the specific fault.

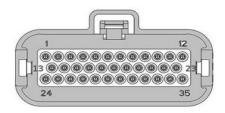
See example configuration below:

2. Tach Driver Configuration

Analog tachometers are configured for an engine with a specific number of cylinders, as the speed of the analog input varies with the number of cylinders. As a result, the tach driver can be configured to simulate engines with various numbers of cylinders. The output is configured with switches 2, 3, and 4 as shown:

Image	Switch 2	Switch 3	Switch 4	# Cylinders
ON DP 1 2 3 4	OFF	OFF	OFF	2
ON DP 1 2 3 4	OFF	OFF	ON	3
0N DP 1 2 3 4	OFF	ON	OFF	4
ON DP 1 2 3 4	OFF	ON	ON	5
ON DP 1 2 3 4	ON	OFF	OFF	6
ON DP 1 2 3 4	ON	OFF	ON	7
ON DP 1 2 3 4	ON	ON	OFF	8
ON DP	ON	ON	ON	10

3. Wiring


Connect the wires on the tach driver as follows:

Wire color	Connect to		
Yellow	CAN high (pin 13 on K1 connector — see attached pinout)		
Blue	CAN low (pin 2 on K1 connector — see attached pinout)		
Red	12V +		
Black	12V -		
Green	Tachometer signal		

<u>NetGain Motors, Inc.</u>

800 South State Street // Suite 4 // Lockport, IL 60441 // 630-243-9100 // 630-685-4054 (FAX)

Wire Harness K1 Pinout

Pin Order Assignment

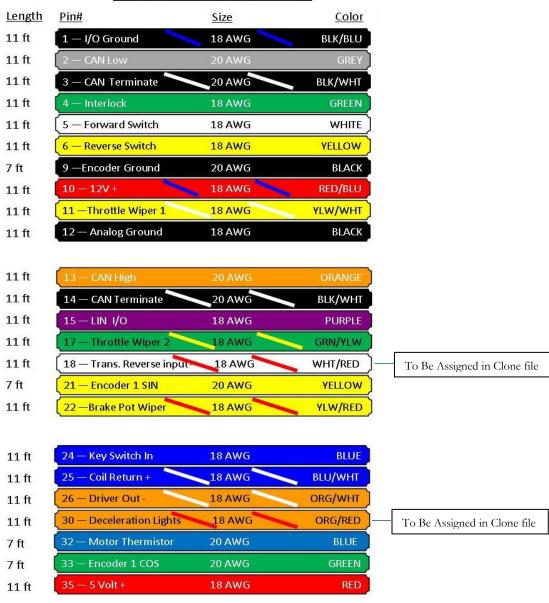


Figure 2 - Standard Pinout Order Assignment